• Home
  • Decision tree
  • OpenAccess
    • List of Articles Decision tree

      • Open Access Article

        1 - Integrating Data Envelopment Analysis and Decision Tree Models in Order to Evaluate Information Technology-Based Units
        Amir Amini ali alinezhad somaye shafaghizade
        In order to evaluate the performance and desirability of the activities of its units each organization needs an evaluation system to assess this desirability and it is more important for financial institutions, including information technology-based companies. Data enve More
        In order to evaluate the performance and desirability of the activities of its units each organization needs an evaluation system to assess this desirability and it is more important for financial institutions, including information technology-based companies. Data envelopment analysis (DEA) is a non-parametric method to measure the effectiveness and efficiency of decision-making units (DMUs). On the other hand, data mining technique allows DMUs to explore and discover meaningful information, which had previously been hidden in large databases. . This paper presents a general framework for combining DEA and regression tree for evaluating the effectiveness and efficiency of the DMUs. Resulting hybrid model is a set of rules that can be used by policy makers to discover reasons behind efficient and inefficient DMUs. Using the proposed method for examining factors related to productivity, a sample of 18 branches of Iran insurance in Tehran was elected as a case study. After modeling based on advanced model the input oriented LVM model with weak disposability in data envelopment analysis was calculated using undesirable output, and by use of decision tree technique deals with extracting and discovering the rules for the cause of increased productivity and reduced productivity. Manuscript profile
      • Open Access Article

        2 - Automatic Lung Diseases Identification using Discrete Cosine Transform-based Features in Radiography Images
        Shamim Yousefi Samad Najjar-Ghabel
        The use of raw radiography results in lung disease identification has not acceptable performance. Machine learning can help identify diseases more accurately. Extensive studies were performed in classical and deep learning-based disease identification, but these methods More
        The use of raw radiography results in lung disease identification has not acceptable performance. Machine learning can help identify diseases more accurately. Extensive studies were performed in classical and deep learning-based disease identification, but these methods do not have acceptable accuracy and efficiency or require high learning data. In this paper, a new method is presented for automatic interstitial lung disease identification on radiography images to address these challenges. In the first step, patient information is removed from the images; the remaining pixels are standardized for more precise processing. In the second step, the reliability of the proposed method is improved by Radon transform, extra data is removed using the Top-hat filter, and the detection rate is increased by Discrete Wavelet Transform and Discrete Cosine Transform. Then, the number of final features is reduced with Locality Sensitive Discriminant Analysis. The processed images are divided into learning and test categories in the third step to create different models using learning data. Finally, the best model is selected using test data. Simulation results on the NIH dataset show that the decision tree provides the most accurate model by improving the harmonic mean of sensitivity and accuracy by up to 1.09times compared to similar approaches. Manuscript profile
      • Open Access Article

        3 - Design and implementation of a survival model for patients with melanoma based on data mining algorithms
        farinaz sanaei Seyed Abdollah  Amin Mousavi Abbas Toloie Eshlaghy ali rajabzadeh ghotri
        Background/Purpose: Among the most commonly diagnosed cancers, melanoma is the second leading cause of cancer-related death. A growing number of people are becoming victims of melanoma. Melanoma is also the most malignant and rare form of skin cancer. Advanced cases of More
        Background/Purpose: Among the most commonly diagnosed cancers, melanoma is the second leading cause of cancer-related death. A growing number of people are becoming victims of melanoma. Melanoma is also the most malignant and rare form of skin cancer. Advanced cases of the disease may cause death due to the spread of the disease to internal organs. The National Cancer Institute reported that approximately 99,780 people were diagnosed with melanoma in 2022, and approximately 7,650 died. Therefore, this study aims to develop an optimization algorithm for predicting melanoma patients' survival. Methodology: This applied research was a descriptive-analytical and retrospective study. The study population included patients with melanoma cancer identified from the National Cancer Research Center at Shahid Beheshti University between 2008 and 2013, with a follow-up period of five years. An optimization model was selected for melanoma survival prognosis based on the evaluation metrics of data mining algorithms. Findings: A neural network algorithm, a Naïve Bayes network, a Bayesian network, a combination of decision tree and Naïve Bayes network, logistic regression, J48, and ID3 were selected as the models used in the national database. Statistically, the studied neural network outperformed other selected algorithms in all evaluation metrics. Conclusion: The results of the present study showed that the neural network with a value of 0.97 has optimal performance in terms of reliability. Therefore, the predictive model of melanoma survival showed a better performance both in terms of discrimination power and reliability. Therefore, this algorithm was proposed as a melanoma survival prediction model. Manuscript profile